

A Fast Algorithm for Ranking Users by their Influence in Online Social Platforms

Nouamane Arhachoui, Esteban Bautista, Maximilien Danisch, Anastasios Giovanidis

Sorbonne Université, CNRS – LIP6, Paris, France

November 10th, 2022 ASONAM 2022, Medipol University, Istanbul, Turkey

Measuring the Influence ●0000000	The Power- ψ algorithm		References 0
Outline		<u>e</u>	SORBONNE UNIVERSITÉ

- 1 Measuring the Influence
- 2 Scalability issue
- 3 The Power- ψ algorithm
- 4 Software: the *psi-score* Python package
- 5 Numerical Analysis

Centrality metrics are widely used in various applications of Network Science:

- communication networks,
- social networks,
- transportation networks,
- etc.

In-degree centrality:

$$C_{in}(v) = \frac{deg^{in}(v)}{|\mathcal{N}| - 1}$$

Betweenness centrality:

$$C_{bet}(v) = \sum_{\substack{s,t \in \mathcal{N} \\ s \neq v \neq t}} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

Closeness centrality:

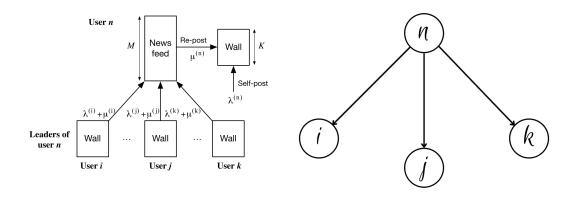
$$C_{clo}(v) = \frac{|\mathcal{N}| - 1}{\sum_{u \in \mathcal{N}} d(v, u)}$$

PageRank:

$$\pi(v,\alpha) = \alpha \sum_{\substack{u \in \mathcal{N} \\ u \neq v}} A_{uv} \frac{\pi(u,\alpha)}{\max(deg^{out}(u),1)} + \frac{1-\alpha}{|\mathcal{N}|}$$

Measuring the Influence	Scalability issue	The Power- ψ algorithm			
0000000	000	000000	000	00000	0

Existing centrality metrics do not consider user activity within the network.



- $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ where $(i, j) \in \mathcal{E}$ iff user i follows user j. $|\mathcal{N}| = N$.
- Each user has a set of **followers** $\mathcal{F}^{(n)}$ and a set of **leaders** $\mathcal{L}^{(n)}$.
- Each user has 2 queues: a Wall of size K and a Newsfeed of size M.
- Each user has a posting rate λ⁽ⁿ⁾ (posts created by n per unit of time) and a re-posting rate μ⁽ⁿ⁾ (posts that n shares per unit of time).

Focus on posts of origin i

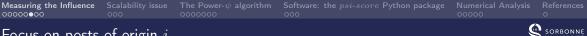
Presence on Newsfeeds

 $\mathbf{p}_i = (p_i^{(1)} \ p_i^{(2)} \ \cdots \ p_i^{(N)})^T$ $\forall n \in \mathcal{N}, p_i^{(n)}$ is the expected percentage of posts originating from user i on the news-feed of user n

Presence on Walls

$$\begin{aligned} \mathbf{q}_i &= (q_i^{(1)} \ q_i^{(2)} \ \cdots \ q_i^{(N)})^T \\ \forall n \in \mathcal{N}, \ q_i^{(n)} \text{ is the expected percentage of posts originating from user } i \text{ on the wall of user } n \\ (\text{influence of } i \text{ on } n) \end{aligned}$$

$$\psi_i = \frac{1}{N} \sum_{n=1}^{N} q_i^{(n)} = \frac{1}{N} \mathbf{1}^T \mathbf{q}_i$$



Focus on posts of origin i

Presence on Newsfeeds

 $\mathbf{p}_i = (p_i^{(1)} \ p_i^{(2)} \ \cdots \ p_i^{(N)})^T$ $\forall n \in \mathcal{N}, p_i^{(n)}$ is the expected percentage of posts originating from user i on the news-feed of user n

Presence on Walls

$$\mathbf{q}_{i} = (q_{i}^{(1)} q_{i}^{(2)} \cdots q_{i}^{(N)})^{T}$$

 $\forall n \in \mathcal{N}, q_{i}^{(n)}$ is the expected percentage of posts originating from user i on the wall of user n
(influence of i on n)

The ψ -score

The influence of a user i over the entire network is:

$$\psi_i = \frac{1}{N} \sum_{n=1}^N q_i^{(n)} = \frac{1}{N} \mathbf{1}^T \mathbf{q}_i$$

Theorem

When all the users have the same activity, i.e. $\forall n \in [\![1, N]\!] \ \lambda^{(n)} = \lambda$ and $\mu^{(n)} = \mu$ and if $\frac{\mu}{\lambda + \mu} = \alpha \in [0, 1]$, then ψ -score = PageRank with a damping factor α

- ψ -score uses additional information useful for measuring the influence
- In social networks, users have heterogeneous behaviors (i.e. different λ and μ)

Process to compute ψ_i

Solve the following linear systems:

$$\mathbf{p}_i = \mathbf{A}\mathbf{p}_i + \mathbf{b}_i$$

 $\mathbf{q}_i = \mathbf{C}\mathbf{p}_i + \mathbf{d}_i$

and use
$$\psi_i = \frac{1}{N}\sum\limits_{n=1}^N q_i^{(n)}$$

where,

$$\begin{array}{|c|c|c|c|c|c|} \mathbf{A} & a_{ji} = \frac{\mu^{(i)}}{\sum \\ \lambda^{(i)} \\ \ell \in \mathscr{L}^{(j)} \end{array}} \mathbbm{1}_{\{i \in \mathscr{L}^{(j)}\}} & \mathbf{b}_i & b_{ji} = \frac{\lambda^{(i)}}{\sum \\ \ell \in \mathscr{L}^{(j)} \\ \ell \in \mathscr{L}^{(j)} \end{array}} \mathbbm{1}_{\{i \in \mathscr{L}^{(j)}\}} \\ \mathbf{C} & c_{ji} = \frac{\mu^{(j)}}{\lambda^{(j)} + \mu^{(j)}} \mathbbm{1}_{\{j=i\}} & \mathbf{d}_i & d_{ji} = \frac{\lambda^{(i)}}{\lambda^{(i)} + \mu^{(i)}} \mathbbm{1}_{\{j=i\}} \end{array}$$

Process to compute ψ_i

Solve the following linear systems:

$$\mathbf{p}_i = \mathbf{A}\mathbf{p}_i + \mathbf{b}_i$$

 $\mathbf{q}_i = \mathbf{C}\mathbf{p}_i + \mathbf{d}_i$

and use
$$\psi_i = \frac{1}{N}\sum\limits_{n=1}^N q_i^{(n)}$$

where,

$$\begin{array}{|c|c|c|c|c|} \mathbf{A} & a_{ji} = \frac{\mu^{(i)}}{\sum (\lambda^{(\ell)} + \mu^{(\ell)})} \mathbb{1}_{\{i \in \mathscr{L}^{(j)}\}} & \mathbf{b}_i & b_{ji} = \frac{\lambda^{(i)}}{\sum (\lambda^{(\ell)} + \mu^{(\ell)})} \mathbb{1}_{\{i \in \mathscr{L}^{(j)}\}} \\ \mathbf{C} & c_{ji} = \frac{\mu^{(j)}}{\lambda^{(j)} + \mu^{(j)}} \mathbb{1}_{\{j=i\}} & \mathbf{d}_i & d_{ji} = \frac{\lambda^{(i)}}{\lambda^{(i)} + \mu^{(i)}} \mathbb{1}_{\{j=i\}} \\ \end{array}$$

To have the whole ψ -score vector, the process needs to be executed for each user in the network. This represents solving N systems of equations.

	Scalability issue ●00	The Power- ψ algorithm		References 0
Outline			Ģ	SORBONNE UNIVERSITÉ

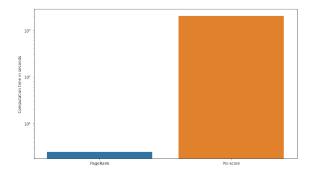
- **1** Measuring the Influence
- 2 Scalability issue
- 3 The Power- ψ algorithm
- 4 Software: the *psi-score* Python package
- **5** Numerical Analysis

	Scalability issue ○●○	The Power- ψ algorithm			
			6	SOPRONNE	

Problem statement

Problem

- The current computation of the ψ -score vector is too slow (compared e.g. to PageRank)
- There are a linear system for each user in the network
- Solving N systems of N equations is required to get the $\psi\text{-score}$ vector



UNIVERSITÉ

Measuring the Influence

Scalability issue Th

Power- ψ algorith

oftware: the *psi-score* Python pa

package Numerica

sis Reference

Problem Statement

Given a social graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ where the nodes have a posting and sharing activity, we aim for an algorithm that computes the ψ -score for all nodes as fast as PageRank.

	The Power-ψ algorithm ●000000		References 0
Outline		<u> </u>	SORBONNE UNIVERSITÉ

- 1 Measuring the Influence
- 2 Scalability issue
- 3 The Power- ψ algorithm
- 4 Software: the *psi-score* Python package
- **5** Numerical Analysis

000000 000 000000 000 0000 0		The Power- ψ algorithm		
		000000		

First step: Rewrite the system

Instead of solving these N systems we can rewrite everything as of N equations:

follows:

 $\mathbf{p}_i = \mathbf{A}\mathbf{p}_i + \mathbf{b}_i$ $\mathbf{P} = \mathbf{AP} + \mathbf{B}$ $\mathbf{q}_i = \mathbf{C}\mathbf{p}_i + \mathbf{d}_i$ $\mathbf{Q} = \mathbf{CP} + \mathbf{D}$

with,			
$\mathbf{P} = (\mathbf{p}_1)$	\mathbf{p}_2	• • •	\mathbf{p}_N
$\mathbf{Q} = (\mathbf{q}_1)$	\mathbf{q}_2	• • •	\mathbf{q}_N
$\mathbf{B} = (\mathbf{b}_1)$	\mathbf{b}_2	•••	\mathbf{b}_N
$\mathbf{D} = (\mathbf{d}_1)$	\mathbf{d}_2		\mathbf{d}_N
all square	matri	ces.	

Theorem

$$\begin{split} \mathbf{A} \text{ is sub-stochastic}^1 &\Rightarrow \rho(\mathbf{A}) < 1 \\ &\Rightarrow \mathbf{P} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{B} = \sum_{t=0}^{\infty} \mathbf{A}^t \mathbf{B} \end{split}$$

¹A sub-stochastic matrix is a real square matrix having each row summing to a value strictly lower than 1.

Sorbonne Université

Second step: Get directly the ψ -score vector

In the same fashion, computing:

$$\forall i, \ \psi_i = \frac{1}{N} \mathbf{1}^T \mathbf{q}_i$$

becomes:

$$\boldsymbol{\psi}^T = \frac{1}{N} \mathbf{1}^T \mathbf{Q}$$

where,

$$\boldsymbol{\psi} = \begin{pmatrix} \psi_1 & \psi_2 & \cdots & \psi_N \end{pmatrix}^T$$

is the $\psi\text{-}\mathsf{score}$ vector

With all these changes, we obtain:

$$\boldsymbol{\psi}^T = rac{1}{N} \left(\mathbf{s}^T \mathbf{B} + \mathbf{1}^T \mathbf{D} \right)$$

where,

$$\mathbf{s}^T = \sum_{t=0}^\infty \mathbf{1}^T \mathbf{C} \mathbf{A}^t$$

C and D are diagonal matrices. No need to compute their product with 1. Let $c := (\mathbf{1}^T C)^T$ and $d := (\mathbf{1}^T D)^T$

$$\mathbf{s}_t^T = \sum_{k=0}^t \mathbf{c}^T \mathbf{A}^k, \qquad \mathbf{s} = \lim_{t \to \infty} \mathbf{s}_t,$$

The sub-stochasticity of \mathbf{A} ensures the convergence of \mathbf{s} .

Truncating the sum gives us the following recursive expression of it:

 $\mathbf{s}_t^T = \mathbf{s}_{t-1}^T \mathbf{A} + \mathbf{c}^T$

where $\mathbf{s}_0 = \mathbf{c}$.

gap parameter computed at each iteration to check the convergence:

$$\varepsilon_t = \left\| \mathbf{s}_t^T - \mathbf{s}_{t-1}^T \right\|$$

	The Power-ψ algorithm 000000●		References 0
Algorithm			SORBONNE UNIVERSITÉ

```
Algorithm 1: Power-\psi: Power iteration based algorithm for the \psi-
score vector.
   input : N number of users, N \times N matrices A and B, two vectors c
                    and d, s-tolerance \varepsilon
   output: vector \boldsymbol{\psi} with the \psi-score of all users
   \mathbf{s} \leftarrow \mathbf{c};
   B\_norm \leftarrow ||\mathbf{B}||;
   t \leftarrow 0;
   gap \leftarrow 1;
   while (gap > \varepsilon) do
         \mathbf{s}_{old} \leftarrow \mathbf{s};
        \mathbf{s}^{T} \leftarrow \mathbf{s}^{T}_{old} \mathbf{A} + \mathbf{c}; \\ gap \leftarrow B_{-norm} \|\mathbf{s}_{old} - \mathbf{s}\|; 
        t \leftarrow t + 1;
  end
  \boldsymbol{\psi}^T \leftarrow \frac{1}{N} \left( \mathbf{s}^T \mathbf{B} + \mathbf{d}^T \right);
   return \boldsymbol{\psi};
```

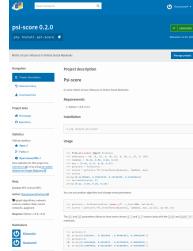
	The Power- ψ algorithm	Software: the psi -score Python package $\bullet 00$	References 0
Outline			SORBONNE UNIVERSITÉ

- 1 Measuring the Influence
- 2 Scalability issue
- 3 The Power- ψ algorithm
- **4** Software: the *psi-score* Python package
- 5 Numerical Analysis

Software: the *psi-score* Python package 000

SORBONNE UNIVERSITE

The *psi-score* Python package



Classifiers

· OSI Approved : MIT License Pythos: 310

Programming Language Pathon : 2

License

 Giovanidis, A., Beynat, B., Magnien, C., & Vendeville, A. (2022). Ranking Online Social Users by Their Influence. IEEE/WCM Transactions on Networking, 29(5), 2238-2234, https://doi.org/10.1109/tvet.2021.3085201 · Arhachoul, N., Bautista, E., Danisch, N., & Giovanidis, A. (2022). A Fast Algorithm for Ranking Users by their

Psi-score

ψ-score: Metric of user influence in Online Social Networks

Requirements

Python >=3.9,<3.11

Installation

\$ pip install psi-score

Usage

>>> from psi_score import PsiScore >>> adjacency = {0: [1, 3], 1: [0, 2], 2: [0, 1, 3], 3: [0]} >>> lambdas = [0.23, 0.50, 0.86, 0.19] >>> mus = [0,42, 0,17, 0,10, 0,37] >>> psiscore = PsiScore() >>> scores = psiscore.fit transform(adjacency, lambdas, mus) >>> scores array([0.21158803, 0.35253745, 0.28798439, 0.14789014]) >>> np.round(scores, 2) array([0.21, 0.35, 0.29, 0.15])

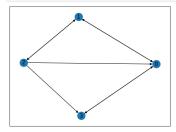
You can use another algorithm and change some parameters:

>>> psiscore = PsiScore(solver='power_nf', n_iter=500, tol=1e-3)

>>> scores = psiscore.fit transform(adjacency, lambdas, mus, ps=[1], qs=[0, 3])

ψ -score

- [1]: from psi_score import PsiScore import networkx as nx
- [2]: adjacency = (0: [1, 3], 1: [0, 2], 2: [0, 1, 3], 3: [0]} lambdas = [0.23, 0.50, 0.86, 0.19] mus = [0.42, 0.17, 0.10, 0.37]
- [3]: G = nx.DiGraph(adjacency)
- [4]: nx.draw_networkx(G)



[5]: power_psi = PsiScore()
scores = power_psi.fit_transform(adjacency, lambdas, mus)

- [6]: import numpy as np np.round(scores, 2)
- [6]: array([0.21, 0.35, 0.29, 0.15])
- [7]: power_nf = PsiScore(solver='power_nf', n_iter=500, tol=1e-3) scores = power_nf.fit_transform(adjacency, lambdas, mus, ps=[1], qs=[0, 3])

[8]: power_nf.P

[8]: {1: array([0.5333334 , 0.1681094 , 0.46801851, 0.34442264])}

PageRank

- [10]: pr = list(nx.pagerank(G).values())
 pr = np.array(pr)
- [11]: # Homogeneous activity lambdas = [0.15]*len(G) mus = [0.85]*len(G)
- [12]: psi_homogeneous = PsiScore(solver='power_psi')
 psi_homogeneous.fit(adjacency, lambdas, mus)

- [12]: <psi_score.psi_score.PsiScore at 0x7f425db554c0>
- [13]: print('PageRank vector:')
 print(np.round(pr, 3))
 - print()
 print('Psi-score vector (for homogeneous activity):')
 print(np.round(psi_homogeneous.scores, 3))

print()

print('Psi-score vector (for heterogeneous activity):')
print(np.round(power_psi.scores, 3))

PageRank vector: [0.382 0.239 0.139 0.239]

Psi-score vector (for homogeneous activity): [0.382 0.239 0.139 0.239]

Psi-score vector (for heterogeneous activity): [0.212 0.353 0.288 0.148]

	The Power- ψ algorithm	Numerical Analysis ●0000	References 0
Outline		<u> </u>	SORBONNE UNIVERSITÉ

- 1 Measuring the Influence
- 2 Scalability issue
- 3 The Power- ψ algorithm
- 4 Software: the *psi-score* Python package

5 Numerical Analysis

		The Power- ψ algorithm	Numerical Analysis	
Numerical Anal	ysis		<u> </u>	SORBONNE UNIVERSITÉ

Datasets:

Dataset name	Туре	#Nodes	#Edges
DBLP	Citation Network	12 591	49 743
Twitter	Social Network	465 017	834 797
Facebook	Social Network	63 731	817 035
HepPh arXiv	Citation Network	34 546	421 578

Three types of experiments:

- Precision assessment for a given tolerance criterion
- Performance assessment for a measured error
- Speed assessment for a given tolerance (unable to measure the error for large datasets)

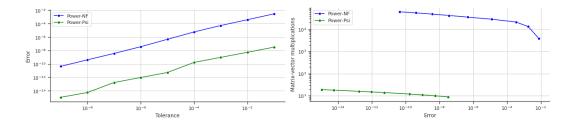
Two scenarios:

- heterogeneous activity scenario: users do not necessarily have the same posting and re-posting activity
- homogeneous activity scenario: all users have the same activity (i.e. the same λ and μ); in this case the ψ-score is exactly PageRank with α = μ/(λ+μ)

22/26

		The Power- ψ algorithm		Numerical Analysis	
(i) Heterogeneous scenario				<u>e</u>	SORBONNE UNIVERSITÉ

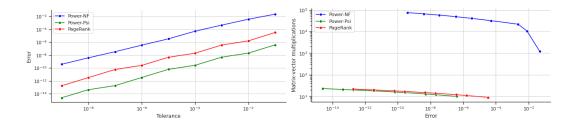
(i) Heterogeneous scenario



Dataset	Power-NF	Power- ψ
DBLP	17.805 sec	0.029 sec
Facebook	1764.226 sec	0.307 sec
Twitter	14526.039 sec	0.634 sec
HepPh	272.358 sec	0.622 sec

with $\varepsilon = 10^{-9}$

(ii) Homogeneous scenario



Dataset	PageRank	Power-NF	Power- ψ
DBLP	0.023 sec	20.775 sec	0.034 sec
Facebook	0.308 sec	2253.302 sec	0.454 sec
Twitter	0.584 sec	17411.146 sec	0.806 sec
HepPh	0.361 sec	360.769 sec	0.908 sec

with $\varepsilon = 10^{-9}$

Conclusion and Future Work

The proposed method

- is nearly as fast as PageRank
- outperforms the state-of-the-art alternative
- enables scalability for real-world datasets

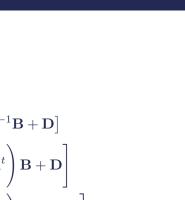
Future work:

- \blacksquare Explore generalizations of the $\psi\text{-score}$ in time evolving networks
- Study the effect of day/night (or ON/OFF) user activity on the model

	The Power- ψ algorithm		References ●
References I		Ģ	SORBONNE UNIVERSITÉ

- Arhachoui, Nouamane et al. (2022). A Fast Algorithm for Ranking Users by their Influence in Online Social Platforms. doi: 10.48550/ARXIV.2206.09960. url: https://arxiv.org/abs/2206.09960.
- Giovanidis, Anastasios et al. (2021). "Ranking Online Social Users by Their Influence". In: *IEEE/ACM Trans. Netw.* 29.5, pp. 2198–2214. doi: 10.1109/TNET.2021.3085201. url: https://doi.org/10.1109/TNET.2021.3085201.
- Wan, Zelin et al. (2021). "A Survey on Centrality Metrics and Their Network Resilience Analysis". In: IEEE Access 9, pp. 104773–104819. doi: 10.1109/ACCESS.2021.3094196.

Appendix A: Obtaining the Power- ψ equation



$$\psi^{T} = \frac{1}{N} \mathbf{1}^{T} \mathbf{Q}$$

$$= \frac{1}{N} \mathbf{1}^{T} (\mathbf{CP} + \mathbf{D})$$

$$= \frac{1}{N} \mathbf{1}^{T} \left[\mathbf{C} (\mathbf{I} - \mathbf{A})^{-1} \mathbf{B} + \mathbf{D} \right]$$

$$= \frac{1}{N} \mathbf{1}^{T} \left[\mathbf{C} \left(\sum_{t=0}^{\infty} \mathbf{A}^{t} \right) \mathbf{B} + \mathbf{D} \right]$$

$$= \frac{1}{N} \left[\mathbf{1}^{T} \mathbf{C} \left(\sum_{t=0}^{\infty} \mathbf{A}^{t} \right) \mathbf{B} + \mathbf{1}^{T} \mathbf{D} \right]$$

$$= \frac{1}{N} \left[\left(\sum_{t=0}^{\infty} \mathbf{1}^{T} \mathbf{C} \mathbf{A}^{t} \right) \mathbf{B} + \mathbf{1}^{T} \mathbf{D} \right]$$

The way s is truncated impacts the precision of $\psi.$

To overcome this, let us define another gap:

$$\delta_t = \left\| \boldsymbol{\psi}_t^T - \boldsymbol{\psi}_{t-1}^T \right\|$$

We can now compare the two:

$$\begin{split} \boldsymbol{\psi}_{t}^{T} - \boldsymbol{\psi}_{t-1}^{T} &= \frac{1}{N} (\mathbf{s}_{t}^{T} \mathbf{B} + \mathbf{d}^{T}) - \frac{1}{N} (\mathbf{s}_{t-1}^{T} \mathbf{B} + \mathbf{d}^{T}) \\ &= \frac{1}{N} (\mathbf{s}_{t}^{T} - \mathbf{s}_{t-1}^{T}) \mathbf{B} \\ \delta_{t} &= \frac{1}{N} \left\| (\mathbf{s}_{t}^{T} - \mathbf{s}_{t-1}^{T}) \mathbf{B} \right\| \\ &\leq \frac{1}{N} \left\| \mathbf{s}_{t}^{T} - \mathbf{s}_{t-1}^{T} \right\| \left\| \mathbf{B} \right\| \\ \delta_{t} &\leq \frac{\varepsilon_{t} \left\| \mathbf{B} \right\|}{N} \end{split}$$

Setting the termination condition to $\varepsilon_t \|\mathbf{B}\| \le \varepsilon$ ensures that $\delta_t \le \frac{\varepsilon}{N} \le \varepsilon$

The way s is truncated impacts the precision of $\psi.$

To overcome this, let us define another gap:

$$\delta_t = \left\| \boldsymbol{\psi}_t^T - \boldsymbol{\psi}_{t-1}^T \right\|$$

We can now compare the two:

$$\begin{split} \boldsymbol{\psi}_{t}^{T} - \boldsymbol{\psi}_{t-1}^{T} &= \frac{1}{N} (\mathbf{s}_{t}^{T} \mathbf{B} + \mathbf{d}^{T}) - \frac{1}{N} (\mathbf{s}_{t-1}^{T} \mathbf{B} + \mathbf{d}^{T}) \\ &= \frac{1}{N} (\mathbf{s}_{t}^{T} - \mathbf{s}_{t-1}^{T}) \mathbf{B} \\ \delta_{t} &= \frac{1}{N} \left\| (\mathbf{s}_{t}^{T} - \mathbf{s}_{t-1}^{T}) \mathbf{B} \right\| \\ &\leq \frac{1}{N} \left\| \mathbf{s}_{t}^{T} - \mathbf{s}_{t-1}^{T} \right\| \left\| \mathbf{B} \right\| \\ \delta_{t} &\leq \frac{\varepsilon_{t} \left\| \mathbf{B} \right\|}{N} \end{split}$$

Setting the termination condition to $\varepsilon_t \|\mathbf{B}\| \leq \varepsilon$ ensures that $\delta_t \leq \frac{\varepsilon}{N} \leq \varepsilon$

The way s is truncated impacts the precision of $\psi.$

To overcome this, let us define another gap:

$$\delta_t = \left\| \boldsymbol{\psi}_t^T - \boldsymbol{\psi}_{t-1}^T \right\|$$

We can now compare the two:

$$\psi_t^T - \psi_{t-1}^T = \frac{1}{N} (\mathbf{s}_t^T \mathbf{B} + \mathbf{d}^T) - \frac{1}{N} (\mathbf{s}_{t-1}^T \mathbf{B} + \mathbf{d}^T)$$
$$= \frac{1}{N} (\mathbf{s}_t^T - \mathbf{s}_{t-1}^T) \mathbf{B}$$
$$\delta_t = \frac{1}{N} \left\| (\mathbf{s}_t^T - \mathbf{s}_{t-1}^T) \mathbf{B} \right\|$$
$$\leq \frac{1}{N} \left\| \mathbf{s}_t^T - \mathbf{s}_{t-1}^T \right\| \left\| \mathbf{B} \right\|$$
$$\delta_t \leq \frac{\varepsilon_t \left\| \mathbf{B} \right\|}{N}$$

Setting the termination condition to $\varepsilon_t \|\mathbf{B}\| \le \varepsilon$ ensures that $\delta_t \le \frac{\varepsilon}{N} \le \varepsilon$